APPLICATION OF THE FLORY THEORY OF LIQUID MIXTURES TO EXCESS VOLUMES AND ENTHALPIES OF BENZENE + CYCLOALKANE AND + n-ALKANE MIXTURES

T.M. LETCHER and D.M. PERKINS

Department of Chemistry, Rhodes University, Grahamstown (South Africa) (Received 17 January 1984)

ABSTRACT

The molar excess volumes of benzene + n-pentane, $+ n$ -dodecane and $+ n$ -hexadecane and the molar excess enthalpies of benzene + cycloheptane, + cyclooctane and + cyclodecane have been measured over the whole composition range at 25°C. These results, together with literature values, have been analysed using the Flory theory of liquid mixtures.

INTRODUCTION

The Flory theory of liquid mixtures has previously been fitted by Benson and Singh $[1]$ to the molar excess volumes and enthalpies of benzene + cycloalkane (cyclopentane, cyclohexane, cycloheptane and cyclooctane) mixtures. In this work, these calculations are repeated using improved experimental results together with literature values [2-4] and the work is extended to include calculations on benzene + cyclodecane using new data. The work is further extended to include calculations on benzene $+ n$ -alkane (*n*-pentane, n -hexane, n -heptane, n -octane, n -dodecane and n -hexadecane) mixtures using new results reported here together with reliable literature values [5-8].

EXPERIMENTAL

The benzene (BDH, Analar grade) was fractionally crystallised four times, dried over sodium and stored. The purity, as judged by GLC was better than 99.9 mol%. The n-pentane (Riedel de Haën, A.G., spectranal grade) and cycloheptane (Aldrich Chemical Co., Gold label $99 + %$ grade) was fractionally distilled and dried over sodium. The n -dodecane, n -hexadecane and cyclooctane (all from Aldrich Chemical Co., Gold label $99 + %$ grade) were fractionally crystallised and also dried under sodium. The cyclodecane (Fluka, purum grade) was used without further purification. Analysis of

 $\frac{a}{2}$

TABLE 1

 $\hat{\boldsymbol{\beta}}$

 \ddot{a}

TABLE 2

269

these compounds by GLC showed purity levels ranging between 99.6 (for n-hexadecane and cyclodecane) and 99.9 mol%.

The V_m^E measurements were done using a Paar (DMA 601) vibrating tube densitometer. The method has been described elsewhere [9]. The H_m^E measurements were done using an LKB 2107 microcalorimeter. The method has also been described elsewhere [10].

RESULTS

Excess molar volumes at 298.15 K are reported for systems for which such data is not available in the literature (e.g., benzene $+ n$ -pentane) and also where the results differ significantly from the literature (e.g., benzene $+ n$ dodecane and $+n$ -hexadecane). Excess molar enthalpies are also given on mixtures for which data is not available (e.g., benzene $+$ cyclodecane) and on mixtures where the results differ significantly from the literature (e.g., benzene + cycloheptane and + cyclooctane). The V_{m}^{E} and H_{m}^{E} results are given in Tables 1 and 2, together with the deviations, $\delta V_{\rm m}^{\rm E}$ and $\delta H_{\rm m}^{\rm E}$, calculated from the following smoothing equations

$$
\delta V_{\rm m}^{\rm E} / (\rm cm^3 \, \rm mol^{-1}) = V_{\rm m}^{\rm E} / (\rm cm^3 \, \rm mol^{-1}) - x(1-x) \sum_{r=0}^{r} A_r (1-2x)^r \tag{1}
$$

and

$$
\delta H_{\rm m}^{\rm E}/(\text{J mol}^{-1}) = H_{\rm m}^{\rm E}/(\text{J mol}^{-1}) - x(1-x) \sum_{r=0}^{r} B_r (1-2x)^r \tag{2}
$$

TABLE 4

Smoothing coefficients for x $C_6H_6 + (1-x)C_vH_{2v}$ at 25°C determined from the results of Table 2

Cycloalkane	B_0 $(J \text{ mol}^{-1})$	в, $(J \text{ mol}^{-1})$	В, $(J \text{ mol}^{-1})$
$Cyclo-C7H14$	3210.1	-465.1	297.3
Cyclo-C _s H_{16}	3230.7	-543.3	401.8
Cyclo-C ₁₀ H ₂₀	3267.8	-593.0	391.9

where x denotes the mole fraction. The coefficients A_r and B_r are given in Tables 3 and 4.

The H_m^E and V_m^E results together with literature data [2-8] have been fitted to the Flory theory of liquid mixtures as previously reported [10]. The properties of the pure liquids used in the calculations are given in Table 5 together with literature references to the properties. In a few cases the properties have been obtained by extrapolation. The results of Flory calculations, performed as previously [10], are given in Table 6. The quantities in this table have been defined previously [10].

DISCUSSION

No measurements for V_m^E at 25°C for benzene + *n*-pentane have been reported in the literature. The present results at 25°C are, however, within experimental error of the extrapolated results of Mahl et al. [18] who measured V_m^E for this system at 15 and 20°C.

Diaz Peña and Nuñez Delgado measured V_m^E for benzene + dodecane and $+$ hexadecane at 25 $\mathrm{^{\circ}C}$ [19]; the results reported here are significantly different to these. No other workers have reported measurements at 25° C on these two systems. V_m^E was also measured for benzene + n-hexane, + n-heptane, $+n$ -octane, + cyclopentane, + cyclohexane, + cycloheptane, + cyclooctane and + cyclodecane. The results in all cases are within the experimental errors of the data available in the literature [2,7] and have not, therefore, been reported here.

The only reported measurements of H_m^E on benzene + cycloheptane are

TABLE 6

within experimental error of the extrapolated results of Mahl et al. [18]. They used a batch calorimeter which had a small vapour space. The present results for the cycloheptane system in the equimolar regions are of the order of 50 J mol^{-1} lower than those of Watson et al. [20]. For the cyclooctane system, the H_m^E results are consistently lower than those of Watson et al., and in the equimolar region the discrepancy is greater than 20 J mol⁻¹. The present H_m^E results for the benzene + cyclopentane and cyclohexane are within the combined experimental errors of this work and that recorded in the literature [3,4], and have therefore, not been reported here. No measurements on benzene + cyclodecane have been previously reported.

The H_m^E measurements on benzene + n-pentane, + n-hexane, + n-heptane, $+n$ -octane, $+n$ -dodecane and $+n$ -hexadecane are within the experimental errors of the literature values [5,6,8] and have, therefore, not been reported here. In comparing the results, it is evident that there are errors in sign for the coefficients in table 3 of ref. 5. These have been corrected in a recent compilation of H_m^E data [21].

The present results of Flory calculations for the benzene + cycloalkane mixtures are very similar to those obtained by Benson and Singh [1] and support the remarkable success of this simple theory in fitting V_m^E and H_m^E data for binary systems of differing molecular size and nature. The poor fit for the benzene + cyclodecane system may be due to errors in the prediction of the properties of cyclodecane.

The application of this theory to benzene $+ n$ -alkane mixtures is also remarkably good although inferior to that obtained for the benzene + cycloalkane mixtures. This is remarkable considering the differences in size, shape and nature of the benzene and n -alkane molecules.

ACKNOWLEDGEMENTS

This work was sponsored by the CSIR (South Africa). The authors thank Miss. S. Wooten and Mr. E. Williams for their help in this work.

REFERENCES

- 1 G.C. Benson and J. Singh, J. Phys. Chem., 72 (1968) 1345.
- 2 J.L. Poveda Vilches, M.C. Alonso, M.A.C. Medina and J. Nufaez Delgado, Thermochim. Acta, 59 (1982) 73.
- 3 P.S. Arora, R.C. Phutela and P.D. Singh. Thermochim. Acta, 10 (1974) 47.
- 4 R.J. Hill and F.L. Swinton, J. Chem. Thermodyn., 12 (1980) 489.
- 5 M. Diaz Pefaa and C. Menduiha, J. Chem. Thermodyn., 6 (1974) 387.
- 6 B.D. Smith, O. Muthu and A. Dewan, J. Phys. Chem. Ref. Data, 12 (1983) 389.
- 7 K.R. Harris and P.J. Dunlop, J. Chem. Thermodyn., 2 (1970) 813.
- 8 E. Müncsch, Thermochim. Acta, 22 (1978) 237.
- 9 T.M. Letcher and B.W.H. Scoones, J. Chem. Thermodyn., 14 (1982) 185.
- 10 W.L. Spiteri and T.M. Letcher, Thermochim. Acta, 59 (1982) 73.
- 11 A.P.I., Selected Values of Properties of Hydrocarbons and Related Compounds. American Petroleum Institute, Research Project 44, Carnegie Press, Pittsburg, PA, 1967.
- 12 M. Diaz Peña and G. Tardajos, J. Chem. Thermodyn., 10 (1978) 19.
- 13 M. Diaz Peha, G. Tardajos, C. Menduiha and R.L. Arenosa, J. Chem. Thermodyn., 11 (1979) 67.
- 14 M.B. Ewing and K.N. Marsh, J. Chem. Thermodyn., 9 (1977) 371.
- 15 G.C. Benson, A. Murakami, V.T. Lam and J. Sing, Can. J. Chem., 48 (1970) 211.
- 16 E. Alcart, G. Tardajas and M. Diaz Peña, J. Chem. Eng. Data, 26 (1981) 22.
- 17 I.A. McLure, J.E. Bennett, A.E.P. Watson and C.G. Benson, J. Phys. Chem., 69 (1965) 2759.
- 18 B.S. Mahl, R.K. Nigam, S.L. Chopra and P.P. Singh, J. Chem. Thermodyn., 3 (1971) 363.
- 19 M. Diaz Peña and J. Nuñez Delgado, J. An. Quim., 70 (1974) 678.
- 20 A.E.P. Watson, I.A. McLure, J.E. Bennett and G.C. Benson, J. Phys. Chem., 69 (1965) 2753.
- 21 J.J. Christensen, R.W. Hanks and R.M. Izatt, Handbook of Heats of Mixing, Wiley, New York, 1982, 207 pp.